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I show that for a certain range in its parameter space, a self-attracting self-avoiding surface can be
mapped onto the hull of a percolation cluster in three dimensions. At a particular point on the boundary
of the low-temperature phase, the self-attracting self-avoiding surface can be mapped onto a percolation

hull at threshold.

PACS number(s): 64.60.Fr, 64.60.Ak, 82.65.Dp, 36.20.Ey

At high temperatures, a polymer chain in a good sol-
vent behaves essentially as if it were a self-avoiding walk
(SAW): Its mean radius of gyration grows as (R ) ~N",
where v has the same value as for the SAW and N is the
molecular weight [1]. As the temperature T is reduced,
however, the short-ranged van der Waals attraction be-
tween monomers becomes increasingly important. At a
certain temperature T4, the chain collapses. The ex-
ponent v is 1/d in d dimensions for all T < T4. The theta
point T =T, is a tricritical point [1].

Recently, there has been a flurry of interest in the
properties of random self-avoiding surfaces [2-9]. A
self-avoiding surface (SAS) is a connected set of elementa-
ry plaquettes on a regular lattice with the property that
each lattice bond belongs to at most two plaquettes.
SAS’s are natural generalizations of the self-avoiding
walk problem, and they arise in high-temperature expan-
sions of lattice gauge theories [10].

In this paper, we shall study a self-attracting self-
avoiding surface (SASAS). The SASAS collapse transi-
tion that occurs as the temperature is reduced is a natural
analog of the theta point in linear polymers.

Self-attracting self-avoiding surfaces have not been
studied previously. However, simulations of self-
attracting ‘“tethered surfaces” have been performed
[11,12]. A tethered surface consists of a regular array of
hard spheres tied together by flexible strings [13,14]. The
length of the strings is taken to be short enough that the
surface is self-avoiding. Tethered surfaces are expected
to be a good model of polymer membranes at high tem-
peratures and in good solvents. However, in addition to
the hard-core repulsion between monomers, there is a
longer-ranged van der Waals attraction between mono-
mers in a real polymer membrane. This attractive in-
teraction becomes increasingly important as the tempera-
ture T is reduced and, at low temperatures, the mem-
brane collapses. In the low-temperature phase, the mem-
brane has fractal dimension 3. Recently, Abraham and
Kardar [11] and Liu and Plischke [12] studied the nature
of this collapse transition. The results of Liu and
Plischke are consistent with recent experimental work on
exfoliated sheets of graphite oxide in aqueous suspension
[15,16].

In attempting to make progress on the SASAS prob-
lem, it is natural to begin by mimicking the approaches
that have been most useful in elucidating the nature the
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collapse transition of a polymer chain in two dimensions
(2D). Perhaps the most important tool used in the theory
of the theta polymers in 2D has been the mapping intro-
duced by Coniglio et al. [17]. These workers showed
that at its collapse transition, a self-attracting polymer
ring on the hexagonal lattice can be mapped onto the hull
of a percolation cluster at threshold. Since it has been
proven that the radius of gyration exponent v is £ for the
perimeter of a percolation cluster at threshold in 2D [18],
the value of the size exponent at the tricritical point v,
must also be £. Similar approaches to the collapse transi-
tion of a polymer chain in 2D have been developed by
Duplantier and Saleur [19] and Bradley [20,21].

In this paper, I demonstrate that for a range of param-
eter values, a certain self-attracting self-avoiding surface
can be mapped onto the hull of a percolation cluster in
three dimensions (3D). This mapping is a generalization
of the mapping of Coniglio et al. to SASAS’s embedded
in a 3D lattice [22]. I also show that at a particular point
on the boundary of its low-temperature phase, the
SASAS is equivalent to a percolation hull at threshold.
Finally, the phase diagram of the SASAS is discussed.

Our SASAS is defined on the lattice dual to the face-
centered cubic (fcc) lattice. The Wigner-Seitz (WS) cell of
the fcc lattice is a rhombic dodecahedron (Fig. 1). The
WS (or dual) lattice is constructed by packing rhombic
dodecahedra to fill space. A site of the original lattice re-
sides at the center of each WS cell. Each of the twelve
faces of a WS cell are identical rhombi, and each of these
rhombi bisect bonds between nearest-neighbor (NN) pairs
of sites in the original fcc lattice. For brevity, we will
refer to a face of a WS cell as a “plaquette.” Note that
each bond in the WS lattice is shared by three plaquettes.

Our SASAS’s are made up of occupied plaquettes. A
set of occupied plaquettes on the WS lattice will be called
connected if, given two plaquettes # and 7' in the
set, there exists a sequence of occupied plaquettes
T, Ty. . .,T,, ™ With the property that each consecutive
pair of plaquettes has a common edge. A set of occupied
plaquettes on the WS lattice will be called a closed self-
avoiding surface if the set is connected and if each bond
in the WS lattice is shared by either zero or two occupied
plaquettes. If a face of a WS cell is occupied, we will say
that the fcc lattice site at the center of the cell is “adja-
cent” to the occupied plaquette. Similarly, we say that
this fcc lattice site is adjacent to the SASAS itself.
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FIG. 1. A Wigner-Seitz cell for the fcc lattice. The sites of
the fcc lattice are shown using solid circles. The shaded solid is
the Wigner-Seitz cell. The fcc lattice site that resides at the
center of this rhombic dodecahedron is not shown.

Consider the equilibrium statistical mechanics of a
closed self-avoiding surface with N plaquettes on the WS
lattice. For simplicity, we take one of the plaquettes in
the surface to be held fixed. We shall permit the genus of
the surface to assume any value. To assign an energy to a
given surface configuration C, we first color the fcc lattice
sites adjacent to the surface. Sites inside the surface are
colored black, while sites outside the surface are colored
white. We then assign an energy €, =0 to the black sites
and an energy €_ =0 to the white sites. Let the number of
black sites be n(C) and the number of white sites be
n_(C). The energy of the configuration C is thus

E(C)=e n (C)+e_n_(C).

For €, =e_=0, our SASAS reduces to a closed SAS
without self-attraction and with arbitrary genus. On the
other hand, if either €, or €_ is positive, the SAS is self-
attracting, since the configurations C with the smallest
values of n . (C) and n _(C) have the lowest energies.

For the case €, =€e_, our SASAS is a natural generali-
zation of the self-attracting self-avoiding loop introduced
by Coniglio et al. [17] from two dimensions to three.
Now consider our SASAS in the general case in which €,
and e_ differ. For definiteness, assume that €, >e_. In
this case, the inside of the SAS attracts itself more strong-
ly than the outside does. Such an asymmetry could occur
in a real vesicle if opposite sides of the membrane have
different chemical composition. Note, however, that
SASAS’s of all possible genuses occur in our ensemble.
In contrast, the topology of a vesicle is fixed.

The partition function for a surface of N plaquettes is

Z(x,y,N)=2x"+(C')y"'(C’) '
<

(1)

Here B=T"!, x =exp(—Be. ), y =exp(—PBe_), and the
sum runs over all closed SAS configurations C’. The
Boltzmann weight of the configuration C is

ny(C) n

"9 Z(x,p,N) . @)
We will now show that for x +y =1, our SASAS can

w(C,x,y,N)=x
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be mapped onto the hull of a site percolation cluster on
the fcc lattice. We begin by defining the hull for site per-
colation on the fcc lattice.

Following the work of Strenski, Bradley, and Debierre
[23] and Bradley, Strenski, and Debierre [24], we take the
hull of a percolation cluster to be a closed SAS composed
of plaquettes on the WS lattice. Consider an arbitrary
plaquette in the hull. By definition, one of the fcc lattice
sites adjacent to this plaquette belongs to the cluster,
while the other does not. Since the fcc lattice sites adja-
cent to the plaquette are nearest neighbors, one of these
sites is occupied and the other is not. If the fcc lattice
sites inside the hull and adjacent to it are occupied, the
hull will be called an external percolation hull; otherwise,
it is an internal percolation hull.

The hulls in site percolation on the fcc lattice are espe-
cially simple for two reasons. First, each bond in the WS
lattice either does not belong to a hull or is shared by two
plaquettes in a hull. This is simpler than the situation for
the simple cubic lattice. Bonds in the WS lattice of the
simple cubic lattice can be shared by zero, two, or four
plaquettes in hulls, and as a consequence there is more
than one possible definition of the hull [24]. The second
reason is that one of the fcc lattice sites adjacent to a pla-
quette in the hull is occupied and the other is not. In
contrast, the hull is more complex in site percolation on
the bece lattice, the problem studied by Strenski, Bradley,
and Debierre [23] and Bradley, Strenski, and Debierre
[24]. In that case, there are two types of plaquettes—
hexagonal and square. Hexagonal faces bisect bonds be-
tween NN pairs of sites in the original lattice, while
square faces lie between next-nearest-neighbor sites. As a
result, the sites adjacent to a square plaquette in the hull
may both be occupied, or one of these sites could be
unoccupied.

Consider an arbitrary closed self-avoiding surface C on
the dual lattice. The number of fcc lattice sites that are
adjacent to C and that are inside (outside) the surface will
be denoted n (C) [n_(C)]. The probability that a given
plaquette 7 belongs to an external percolation hull of ¥
plaquettes is given by

P(p’N)zzpn+(C')(l_P)nw(C') . 3)
<

Here the sum runs over all closed SAS’s C’ with N pla-
quettes that contain 7. If it is given that the plaquette 7
belongs to an external hull containing N plaquettes, the
probability of a particular external hull configuration C is

p(Cp,N)=p "+ (1—p)" =" /P(p,N) . @)

Simple expressions of this kind do not apply for hulls on
either the simple cubic or bcc lattices.

We are now ready to construct our mapping. Combin-
ing Egs. (3) and (4) with Egs. (1) and (2), we obtain

Z(p,1—p,N)=P(p,N) ()
and
w(C,p,1—p,N)=p(C,p,N) . (6)

Analogous relations exist between the SASAS and inter-



49 MAPPING BETWEEN A SELF-ATTRACTING SELF-AVOIDING ... 1911

nal percolation hulls, but these will not be needed and so
I will not pause to discuss them.

We have shown that for x+y=exp(—pBe.)
+exp(—Pe_)=1, our SASAS is equivalent to an external
percolation hull for site percolation on the fcc lattice with
p=x. Accordingly, we will refer to the line x +y =1 in
the parameter space of the SASAS as the “percola-
tion line.”

I shall now show that at a particular point on the
boundary of its collapsed low-temperature phase, the
SASAS can be mapped onto the hull of a 3D percolation
cluster at threshold. In our discussion, we will use the
mapping just described in combination with what is
known about the behavior of percolation hulls in 3D.

At T=o our self-avoiding surfaces are not self-
attracting and their genus is unrestricted. SAS’s of this
kind are in the same universality class as surfaces with
genus zero [9]. Thus, they are in the same universality
class as lattice animals.

Based on our knowledge of the behavior of self-
attracting self-avoiding walks, we expect that so long as
either €, or €_ is positive, a collapse transition of our
SASAS will occur at a certain temperature T4>0. (Of
course, T, will depend on €, and €_.) For T >>Ty, the
scaling properties of the surface should be the same as at
T=o. For T <Ty, on the other hand, the SASAS col-
lapses and it has fractal dimension D =3.

Recall that for x +y =1, the SASAS is equivalent to
the hull of a percolation cluster with p =x. Recently,
Strenski, Bradley, and Debierre [23)], Bradley, Strenski,
and Debierre [24], and Cao and Wong [25] carried out
extensive Monte Carlo simulations of percolation hulls in
3D. For p <p, and for p >1—p,, only finite percolation
hulls exist. For p. <p <1—p,, there is an infinitely large
hull. The asymptotic fractal dimension of the infinite
hull is 3 for p, <p <1—p, [23,24,26,27]. Monte Carlo
simulations yielded the estimates D’'=2.548+0.014 for
the fractal dimension of the infinite hull at threshold and
0'=0.4610.01 for the crossover exponent [23,24]. The
percolation threshold for site percolation on the fcc lat-
tice was found to be p, =0.1998+0.0006 using a series
expansion [28].

For p, <p <1—p,, the asymptotic fractal dimension of
the hull is 3. This is the fractal dimension of the SASAS
in its low-temperature phase. Thus, the segment of the
percolation line with p, <x <1—p, must lie in the low-
temperature phase.

I shall now argue that the segment of the percolation
line with x <p, cannot lie in the low-temperature phase
of the SASAS. Call this segment S. For p <p., only
finite percolation hulls exist. In this regime, percolation
clusters with linear dimensions large compared to the
correlation length £ are believed to have the same fractal
dimension as lattice animals in 3D [29]. The fractal di-
mension of lattice animals in 3D is exactly 2 [30]. Lattice
animal hulls have not yet been studied and their fractal
dimension is unknown. It is clear, however, that the frac-
tal dimension of the lattice animal hull cannot exceed the
fractal dimension of the cluster itself, and so is less than
or equal to 2. Thus, the segment S does not lie in the
low-temperature phase of the SASAS.

We now see that the point (x,y)=(p.,1—p,) lies on the
boundary of the low-temperature phase. At this point
(which I shall call Pe), the fractal dimension of the
SASAS is equal to fractal dimension of the hull of a 3D
percolation cluster at criticality, D’. Moreover, the
crossover exponent which describes the approach to the
point Pe along the percolation line x +y =1 is equal to
o'. Similar conclusions apply to the SASAS at the point
(x,y)=01-p,,p.).

What is the nature of the SASAS phase diagram? In
the simplest scenario, the SASAS would have two phases,
a high-temperature lattice animal phase, and a collapsed
low-temperature phase. The parameter €_ /€, would be
irrelevant, and so all points on the phase boundary would
be characterized by the same critical exponents.

Although this simple scenario is appealing, it is almost
certainly incorrect. For €, =e€_, the SASAS collapse
transition should be in the same universality class as the
collapse of a self-attracting lattice animal. An exact
enumeration study of the collapse of a lattice animal with
a contact fugacity yielded the estimate ¢ =0.82+0.02 for
the crossover exponent [31]. This strongly suggests that
the collapse transitions that occur at the point Pe and on
the line x =y are in different universality classes. Addi-
tional evidence for this comes from the recent conjecture
that D =2 and ¢=1 at the theta point of a 3D lattice an-
imal [9]. These exponents are far from D' and o’.

The collapse transition of the SASAS with €, = c and
€_>0 is also most likely in a different universality class
than the transition at Pe. We begin our discussion of this
transition by studying the ground states of the SASAS
with €, >0 and e_=0. For simplicity, we consider the
case in which N =10M +2, where M is a positive integer,
but similar considerations hold for general values of N.
An allowed conformation of the SASAS can be construct-
ed as follows: We begin with a tree of M occupied sites
on the dual fcc lattice. (A tree is a cluster of sites with no
loops). The corresponding SASAS on the WS lattice con-
sists of those plaquettes that belong to one and only one
WS cell with an occupied dual lattice site at its center. It
can be shown that this configuration is a ground state of
the SASAS, and that all of the ground states of the
SASAS can be constructed in this fashion [32].

In the limit in which €, — o and €_=0, only the
ground state configurations of the SASAS are allowed
states. Thus, for x =0 and y =1 the SASAS with
N =10M +2 plaquettes can be mapped onto a tree of M
sites on the dual lattice. We conclude that for x =0 and
y =1 the SASAS has the same scaling behavior as a lat-
tice tree. Since lattice trees are in the same universality
class as lattice animals [33,34], the SASAS has the same
scaling behavior as a lattice animal.

For x =0 and y =1 the SASAS can be mapped onto a
lattice tree without self-attraction. More generally, the
SASAS is equivalent to a self-attracting lattice tree for
x=0and 0<y <1. As y is reduced from 1, the attrac-
tion between the branches of the tree becomes increasing-
ly important. The tree collapses at a critical value of y
which we denote by y.. The collapse transition of
a 3D self-attracting tree has recently been studied by
Gaunt and Flesia [35]. They obtained the estimate
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¢=0.8210.03 for the crossover exponent for this transi-
tion, which is far from o’. This strongly suggests that the
collapse transitions at Pe and the point (x,y)=(0,y.) are
in different universality classes.

We have all but ruled out the simplest scenario for the
phase diagram of the SASAS. What then is the nature of
the phase diagram? The answer to this question must
await future work. The 2D analog of our SASAS has
three phases—in addition to the usual high- and low-
temperature phases, there is a “branched polymer” phase
at intermediate temperatures [36]. Monte Carlo or exact

enumeration studies of our SASAS would be particularly
illuminating, since they could readily reveal the number
and kind of phases present. A particularly exciting possi-
bility is that there is an unexpected third phase present,
and that Pe is a tetracritical point at the confluence of the
three phases.
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FIG. 1. A Wigner-Seitz cell for the fcc lattice. The sites of
the fcc lattice are shown using solid circles. The shaded solid is
the Wigner-Seitz cell. The fcc lattice site that resides at the
center of this rhombic dodecahedron is not shown.



